
FIDO U2F Cheat Sheet



Server side

- Send challenge
- Send previously registered keyHandles

(if needed)

- Verify if device/keyHandle
not already registered

- Generate & store: pubKey, 
privKey, keyHandle

- Store: app param
- Create & store: counter

pubKey: user public Key [65 bytes], stored on U2F device and authentication server
privKey: user private Key [32 bytes], stored on U2F device
keyHandle: unique Key index [up to 255 bytes2], generated by U2F device, can be purely random or used to wrap private keys related information (can be unsafe)
appId: application ID, also called origin, server domain name, i.e.: localhost, xyz.com [32 bytes]
app param (application parameter): SHA-256 hash of application ID [32 bytes]
challenge: random string, generated by the server [32 bytes here – no recommended default length]
chall param (challenge parameter): SHA-256 hash of clientData = type, challenge, origin (and cid_pubkey if optional TLS Channel ID protection is available – see details below) [32 bytes]
registeredTokens: contains challenges for every keyHandles a user already registered, inside an array of (appId, challenge, keyHandle, version)
check flag: All already registered keyHandles are used to simulate an authentication with U2F device. This flag means: just check if this keyHandle is not already present inside U2F device.
version: selected version of U2F (String “U2F_V2”)
counter: per key pair [4 bytes], incremented every time an authentication occurs (U2F specifications let manufacturers choose to have a global counter or per key pair counters3)

- Send info back to browser 
signed with stored 
production private key

registrationData:
- user public key: [65 bytes]. (uncompressed) x,y-representation of a curve point on a P-256 NIST elliptic curve
- keyHandle length byte [1 byte], which specifies the length of the key handle
- keyHandle [length specified in previous field, 64 bytes by default here]. Unique ID of the generated key pair.
- attestation certificate: [max size: 2048 bytes] X.509 DER certificate. Same for all -or at least a large batch/number 
of- devices from a same manufacturer)(production public key + product info) signed by manufacturer private key

1 - signature : [max size: 72 bytes] ECDSA signature of (app param, chall param, keyHandle, pubKey)  signed with production private key

clientData:
- type: constant ‘navigator.id.finishEnrollment’ for registration
- challenge: random encoded string provided by the server
- origin: same as appId
- cid_pubkey (Optional, if browser and server support ID TLS extension):
Channel ID public key used by browser to communicate with origin 

username, password

U2F Registration

appId, challenge, version, registeredTokens

- Verify signature using the production
public key certified in the attestation 
certificate. (option: verify attestation
certificate with stored manufacturer
public key)

- Store user info (keyHandle, pubKey)

chall param, app param

registrationData

pubKey, keyHandle, attestation certificate, signature1(app param, chall param, keyHandle, pubKey )

type, challenge, cid_pubkey, origin

clientData

[appId, challenge, version, keyHandle]

[chall param, app param, keyHandle, check flag]

FIDO Client (Chrome browser) : U2f.register()

h
tt
p
s:
//
lin
ke
d
in
.c
o
m
/i
n
/f
re
d
er
ic
2

U2F Device

2
-F

or
 K

ey
do

U2
F 

pr
od

uc
t: 

Ra
nd

om
 6

4 
By

te
s

3
-F

or
 K

ey
do

U2
F 

pr
od

uc
t: 

pe
r k

ey
 p

ai
r c

ou
nt

er
s

https://linkedin.com/in/frederic2


U2F Device FIDO Client (Chrome browser) : U2f.sign() Server side

- Send challenge & keyHandle

- Retrieve Key pair from
keyHandle and increment
associated counter

- Send info back to browser
signed with stored privKey

username, password

type, challenge, cid_pubkey, origin, keyHandle

clientData

- Verify signature for authentication using
stored pubKey

signatureData

user presence, counter, signature1(app param, user presence, counter, chall param )

[appId, challenge, version, keyHandle]

registeredTokens[chall param, app param, KeyHandle]

pubKey: user public Key [65 bytes], stored on both U2F device and authentication server sides
privKey: user private Key [32 bytes], stored on U2F device side only
keyHandle: unique Key index [up to 255 bytes2], generated by U2F device, can be purely or used to wrap private keys related information (can be unsafe)
appId: application ID, also called origin, server domain name, i.e.: localhost, xyz.com [32 bytes]
app param (application parameter): SHA-256 hash of application ID [32 bytes]
challenge: random string, generated by the server [32 bytes here – no recommended default length]
chall param (challenge parameter): SHA-256 hash of clientData = type, challenge, origin (and cid_pubkey if optional TLS Channel ID protection is available – see details below) [32 bytes]
registeredTokens: contains challenges for every keyHandles a user already registered, inside an array of (appId, challenge, keyHandle, version)
version: selected version of U2F (String “U2F_V2”)
counter: per key pair [4 bytes], incremented every time an authentication occurs (U2F specifications let manufacturers choose to have a global counter or per key pair counters3)

signatureData:
- user presence: [1 byte]. Bit 0 is set to 1, which means that user presence was verified.
- counter: [4 bytes]. big-endian representation of U2F device authentication counter 
1 - signature: [max size: 72 bytes] ECDSA signature of (app param, user presence, counter, chall param)

signed with privKey

clientData:
- type: constant ‘navigator.id.getAssertion’ for authentication
- challenge: random encoded string provided by the server
- origin: same as appId
- cid_pubkey (Optional, if browser and server support ID TLS extension):
Channel ID public key used by browser to communicate with origin 

U2F Authentication

h
tt
p
s:
//
lin
ke
d
in
.c
o
m
/i
n
/f
re
d
er
ic
2

2
-F

or
 K

ey
do

U2
F 

pr
od

uc
t: 

Ra
nd

om
 6

4 
By

te
s

3
-F

or
 K

ey
do

U2
F 

pr
od

uc
t: 

pe
r k

ey
 p

ai
r c

ou
nt

er
s

https://linkedin.com/in/frederic2


frederic.martin@neowave.fr

https://linkedin.com/in/frederic2

Frédéric MARTIN

System & Security Architect

https://www.neowave.fr/pdfs/FIDO-U2F-CHEAT-SHEET.pdf

Last version of this document is always available here:

https://fidoalliance.org/download/

More information on official FIDO U2F specifications:

https://creativecommons.org/licenses/by/2.0/

Document version 170707

mailto:Frederic.martin@neowave.fr
https://linkedin.com/in/frederic2
https://www.neowave.fr/pdfs/FIDO-U2F-CHEAT-SHEET.pdf
https://fidoalliance.org/download/

